Origin of the energy barrier to chemical reactions of O2 on Al(111): evidence for charge transfer, not spin selection.
نویسندگان
چکیده
Dissociative adsorption of molecular oxygen on the Al(111) surface exhibits mechanistic complexity that remains surprisingly poorly understood in terms of the underlying physics. Experiments clearly indicate substantial energy barriers and a mysteriously large number of adsorbed single oxygen atoms instead of pairs. Conventional first principles quantum mechanics (density functional theory) predicts no energy barrier at all; instead, spin selection rules have been invoked to explain the barrier. In this Letter, we show that correct barriers arise naturally when embedded correlated electron wave functions are used to capture the physics of the interaction of O(2) with the metal surface. The barrier originates from an abrupt charge transfer (from metal to oxygen), which is properly treated within correlated wave function theory but not within conventional density functional theory. Our potential energy surfaces also identify oxygen atom abstraction as the dominant reaction pathway at low incident energies, consistent with measurements, and show that charge transfer occurs in a stepwise fashion.
منابع مشابه
A NEW GAS DIFFUSION ELECTRODE (GDE) WITH A BETTER O2 REDUCTION ELECTROCATALYSTS WITH VERY LOW PT CONTENTS VIA NANO-SIZED PT-COATED NAFION
In the present study, a new gas diffusion electrode (GDE) (based on Pt/Nafion membrane) is fabricated. The electrochemical results show that the new GDE has the highest electrochemical activity toward the oxygen reduction reaction (ORR) among the three electrodes. The SEM and XRD findings show that a platinum layer can be attached to Nafion membrane closely and firmly with a strong peak corresp...
متن کاملFingerprints for spin-selection rules in the interaction dynamics of O2 at Al(111).
We perform mixed quantum-classical molecular dynamics simulations based on first-principles potential-energy surfaces to demonstrate that the scattering of a beam of singlet O2 molecules at Al(111) will enable an unambiguous assessment of the role of spin-selection rules for the adsorption dynamics. At thermal energies we predict a sticking probability that is substantially less than unity, wit...
متن کاملEquivalent Electrical Circuit Modeling of Ceramic-Based Microbial Fuel Cells Using the Electrochemical Impedance Spectroscopy (EIS) Analysis
The effect of the thickness of ceramic membrane on the productivity of microbial fuel cells (MFCs) was investigated with respect to the electricity generation and domestic wastewater treatment efficiencies. The thickest ceramic membrane (9 mm) gained the highest coulombic efficiency (27.58±4.2 %), voltage (681.15±33.1 mV), and current and power densities (447.11±21.37 mA/m2, 63.82±10.42 mW/m2) ...
متن کاملDissociation of O2 at Al(111): The Role of Spin Selection Rules
A most basic and puzzling enigma in surface science is the description of the dissociative adsorption of O2 at the (111) surface of Al. Already for the sticking curve alone, the disagreement between experiment and results of state-of-the-art first-principles calculations can hardly be more dramatic. In this paper we show that this is caused by hitherto unaccounted spin selection rules, which gi...
متن کاملNumerical Study of Electro-thermo-convection in a Differentially Heated Cavity Filled with a Dielectric Liquid Subjected to Partial Unipolar Injection
The Coulomb force applied by an electric field on any charge present in a dielectric liquid may cause fluid motion. At high applied electric fields in an insulating liquid, electric charge carriers are created at metallic/liquid interfaces, a process referred to as ion injection, and result from electrochemical reactions. In this article we deals with the problem of electro thermal convection i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 109 19 شماره
صفحات -
تاریخ انتشار 2012